Звоните: +7 903 280-81-91
(Глеб Валентинович)

ЕГЭ по математике ЕГЭ по химии ОГЭ по математике ОГЭ по химии Высшая математика Химия студентам Математика Математика. Тесты
На главную Обо мне. Отзывы Контакты Условия и цены Вопрос - ответ Карта сайта Химия. Справочник Химия. Тесты


Главная > Все статьи > Четность. Часть I


Четность и нечетность

Соображения четности (нечетности) часто используются при решении математических задач (и элементарных, и весьма "продвинутых"). В данной статье рассматриваются подходы к решению подобных задач.

Мы начнем с простейших примеров, а в заключительной части рассмотрим несколько "олимпиадных" заданий, в решении которых нам помогут соображения четности.


Четные и нечетные числа. Начальные сведения

В данной статье мы будем рассматривать главным образом натуральные или целые числа. Напомню, что число называется четным, если оно делится нацело на 2. Иначе говоря, любое четное число n можно представить в виде n = 2k, где k - целое число, а любое нечетное - в виде n = 2k + 1 (или n = 2k - 1). Ноль, естественно, будем считать четным числом.

Пример 1. Числа 34 и 171 представьте в виде 2k или 2k + 1, где k-целое число.

34 = 2 • 17 (34 - четное число); 171 = 2 • 85 + 1 (171 - нечетное число).

Задание 1. Числа 68, 133, -2246 и -8977 представьте в виде 2k или 2k+1, где k-целое число.

Задание 2. Представьте число 18 в виде: а) суммы двух четных чисел, б) суммы двух нечетных чисел. Можно ли получить 18 при сложении четного и нечетного чисел?

Задание 3. Представьте число 24 в виде: а) произведения двух четных чисел, б) произведения четного и нечетного чисел. Можно ли получить 24 при умножении двух нечетных чисел?


Сумма, произведение, частное четных (нечетных) чисел

Утверждение 1. Сумма двух четных чисел - четное число.

Доказательство. Пусть числа m и n являются четными. Докажем, что число r = m + n также четно. m=2k, n=2p, где k и p - целые числа. Тогда r = m + n = 2k + 2p = 2(k + p) = 2s. Если числа k и p являются целыми, то их сумма s - тоже целое число. Мы доказали, что число r может быть представлено в виде произведения двойки и целого числа. Доказательство завершено.

Утверждение 2. Сумма двух нечетных чисел - четное число. Докажите самостоятельно.

Утверждение 3. Сумма четного и нечетного чисел - нечетное число. Докажите самостоятельно.

Утверждение 4. Произведение двух нечетных чисел - нечетное число.

Доказательство. Пусть числа m и n являются нечетными. Докажем, что число r = m • n также нечетно.
m = 2k + 1, n = 2p + 1, где k и p - целые числа.
Тогда r = m • n = (2k+1) • (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s + 1.

Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.
Мы доказали, что число r может быть представлено в виде r = 2s + 1, следовательно, является нечетным. Ч. т. д.

Утверждение 5. Произведение двух четных чисел - четное число. Докажите самостоятельно.

Утверждение 6. Произведение четного и нечетного чисел - четное число. Докажите самостоятельно.

А если мы поделим четное число на четное (не равное нулю)? Что получим: чет или нечет? Естественно, однозначного ответа дать нельзя. Например, при делении 12 на 4 мы получаем нечетный результат, а при делении 32 на 4 - четный.


Если вы уже заскучали, переходите ко 2-й части статьи. Потом всегда сможете вернуться. Если же все эти теоретические построения вас не слишком утомили, давайте продолжим.


А почему, собственно, мы рассматриваем только два числа. Давайте мыслить шире!

Утверждение 7. Сумма любого количества четных чисел четна.

Доказательство. Пусть числа M1, M2, ..., MN являются четными, тогда их можно представить в виде 2K1, 2K2, ... , 2KN, где K1, K2, ..., KN - целые числа.

Тогда: M1 + M2 + ... + MN = 2K1 + 2K2 + ... + 2KN = 2( K1 + K2 + ... + KN) = 2S, где S-целое число. Четность доказана.

Утверждение 8. Сумма четного количества нечетных чисел четна. Сумма нечетного количества нечетных чисел нечетна. Докажите самостоятельно.

Утверждение 9. Произведение может быть нечетным только в том случае, если все сомножители нечетны. Докажите самостоятельно.

Так, сумма 2+4+6+...+1022+1024 четна, поскольку все слагаемые четны. Сумма 1+3+5+7+9 нечетна, т. к. содержит 5 нечетных слагаемых. Произведение 2*3*4*...*1001*1002 четно уже хотя бы по той причине, что первый сомножитель является четным.

Задание 4. Четными или нечетными будут следующие выражения: а) 2+12+22+...+1002+1012+1022, б) 1+11+111+...+111111+1111111, в) 3*13*23*...*10003*10013*10023, г) 2*3*4*...*12357891 ?

Задание 5. Докажите, что произведение всех простых чисел, не превосходящих 1000000, четно. Докажите, что произведение любого количества простых чисел, каждое из которых больше 100, нечетно. Напомню, что натуральное число называется простым, если делится только на себя и на 1.


И вновь о сумме и произведении

Пример 2. Юный математик Петя сложил сумму двух целых чисел и их произведение. Он утверждает, что у него получилось число 56792. Возможно ли такое, если известно, что хотя бы одно из исходных чисел нечетно?

Решение. Обозначим исходные числа A и B. Очевидно, возможно 4 варианта:

В принципе, два последних случая можно было бы безболезненно объединить, но для нас это сейчас несущественно. В предыдущем пункте мы выяснили все, что касается четности суммы и произведения. А теперь давайте составим таблицу. В первых двух колонках укажем четность чисел А и В, в 3-й колонке - четность суммы, в 4-й четность произведения, в 5-й - четность итогового числа.

ABA+BAB (A+B) + АВ
ЧЧЧЧ Ч
ННЧН Н
ЧННЧ Н
НЧНЧ Н

Во всех случаях (кроме первого) получаем нечетный результат!

Между прочим, наш юный друг Петя утверждает, что получил четное число. Мы доказали, что это невозможно. Петя ошибся.

Задание 6. Юный математик Маша умножила произведение двух целых чисел на их сумму. Она утверждает, что получилось число 89999719. Права ли Маша?

Задание 7. Юный математик Петя утверждает, что при сложении двух целых чисел получил 927, а при умножении - 6321. Возможно ли такое? Объясните ваш ответ.


Сознаю, что первая часть статьи может показаться читателю довольно утомительной и однообразной. К сожалению, обойтись без этих "скучных" базовых понятий нельзя. Обещаю, что дальше будет гораздо интереснее.


Продолжение статьи →



Понравился сайт? Поделитесь ссылкой!
Копирайт

Воспроизведение материалов данного сайта возможно только с письменного согласия владельца сайта и при условии размещения активной ссылки на главную страницу данного ресурса.
Незаконное копирование будет преследоваться всеми возможными способами.


Copyright Repetitor2000.ru, 2000-2018.



 
Контакты
  • Телефон: 8-903-280-81-91 (Глеб Валентинович)
  • Эл. почта: teacher2002@mail.ru
  • Скайп: repetitor2000


Карта сайта



 
Счетчики

Яндекс.Метрика Рейтинг@Mail.ru